

Tropical Forages

Phenotyping of *Brachiaria humidicola* hybrids for its BNI potential, biomass production, forage quality and N₂O Emissions

March 25, 2019

IFTBC conference, Orlando - USA

<u>Jacobo Arango</u>¹, Ashly Arevalo¹, Daniel Villegas¹, Jonathan Nuñez^{1,2}, Danilo Moreta¹, Valheria Castiblanco¹, Idupulatapti Rao^{1,3}, Manabu Ishitani¹

¹International Center for Tropical Agriculture (CIAT), Cali, Colombia. ²Present address: Landcare Research, Lincoln, New Zealand; ³Present address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, US.

ciat.cgiar.org

CIAT: Three breeding programs in Tropical Grasses

Interspecific - *Brachiaria decumbens / brizantha / ruziziensis* 1990

Robust, tolerant to low fertility.

Characteristics to be improved: Spittlebug resistance, persistence, seed production and abiotic stress.

ciat.cgiar.org

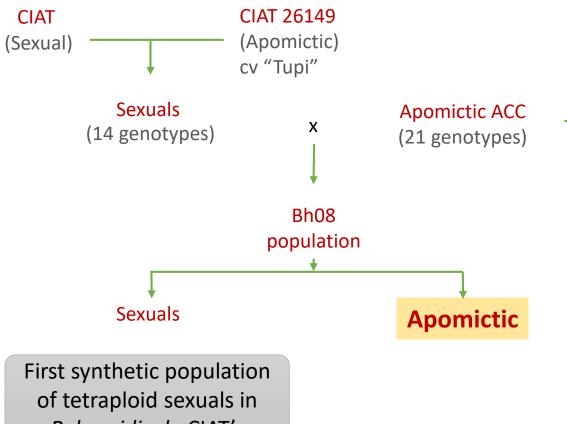
Please visit posters # 17 to 21!

Brachiaria humidicola 2010

Robust, tolerant to low fertility, tolerant to watterlogging and high BNI.

Characteristics to be improved: Nutritional quality, spittlebug resistance, seed production, abiotic stress.

Dr. Valheria Castiblanco


Panicum maximum
2016

High quality and biomass production. Double purpose forage and high BNI.

Characteristics to be improved: Abiotic

stress.

Brachiaria humidicola program: Recurrent Selection

High biological nitrification inhibition and biomass

- [BNI, CIAT-16888 (Subbarao et al. 2009)]
- Cv. "Antioqueña" (ICA 2017)

High waterlogging tolerance

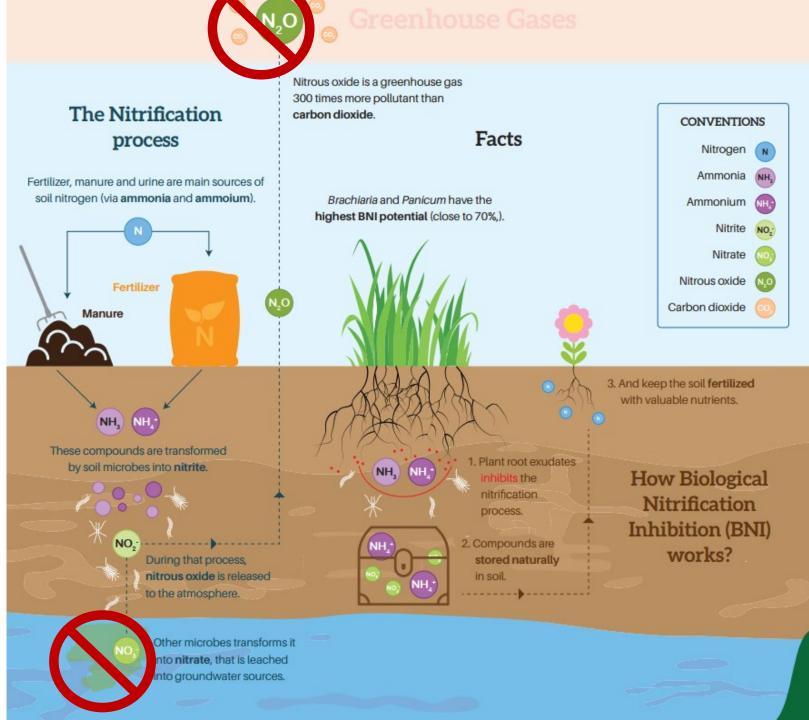
 CIAT-6570, CIAT-6013, CIAT-6133 and CIAT-679 (Cardoso et al. 2013, 2014)]

Spittlebug tolerance

- CIAT-6133 [previously identify as *B. dictyoneura* (Fig. & De Not.) Stapf]
- "Llanero" cultivar (ICA 1987)

First synthetic population of tetraploid sexuals in *B. humidicola* CIAT's hybrid breeding for Recurrent Selection

Why Inhibit Nitrification?


Nitrification is one of the major causes of nitrogen loss from agricultural systems (up to 70% of the N fertilizer applied is lost to the environment)

Direct annual economic loss

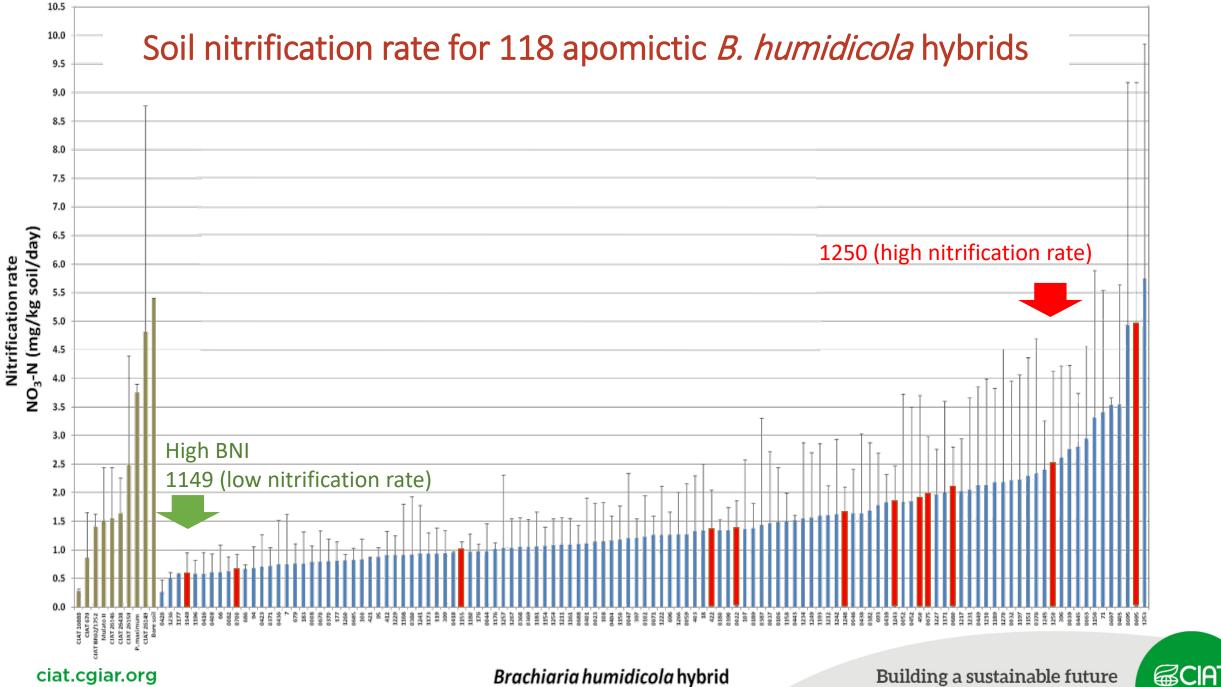
\$81 Billions U.S. Dollars*

*Based on a world annual N fertilizer production of 150 million Mg, US\$ 0.50 kg⁻¹ urea. Source: Galloway et al., 2008.

ciat.cgiar.org

Apomictic hybrids of *B. humidicola* (Bh) BH08 population

Year 2012:

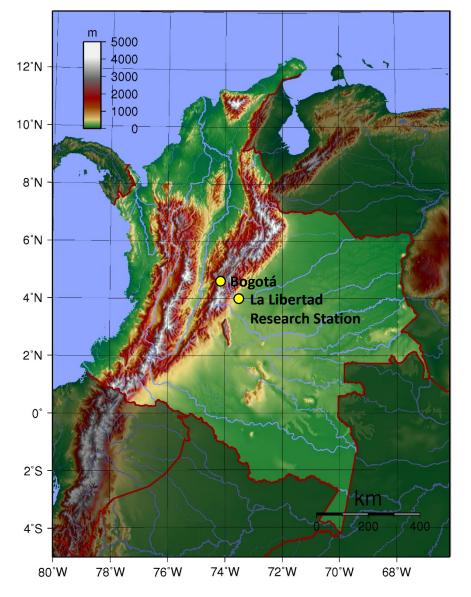

Evaluation of 118 hybrids of *B. humidicola* (Bh) for their growth and nutritive value and their potential ability to inhibit nitrification in soil under greenhouse conditions.

Objective:

To identify contrasting hybrids with different levels of BNI and the selection of a set of 12 contrasting hybrids for subsequent field evaluations.

(Pre-breeding, methodology development and potential hybrid identification)

ciat.cgiar.org


Brachiaria humidicola hybrid

Twelve contrasting *Bh* hybrids BH08 selectef for field evaluation

Bh08 hybrid	Controls	
1149	B. humidicola CIAT 26159 (high BNI)	
450	<i>B. humidicola</i> CIAT 16888 (high BNI)	
1250	B. humidicola CIAT 679 (high BNI)	
0700	B. humidicola CIAT 26146 (parental)	
696	B. humidicola CIAT 26149 (parental)	
1155	<i>Brachiaria</i> hybrid cv. Mulato II CIAT 36087 (low- inter. BNI)	
422	Panicum maximum CIAT 16028 (intermediate BNI)	
0680	Bare soil: negative control (no plants)	
0675		
1248		
1243		
0022		

Field evaluation 2014-2018

Study location: Agrosavia-La Libertad Research Center ("Llanos" region of Colombia)

- Altitude: 336 m.a.s.l.
 - Annual mean temperature: 26 °C
- Annual mean rainfall: 2,933 mm
- Soil order: Oxisol

ļ

Soil chemical analysis (20 cm depth) of field site

pH: 4.91
OM: 30.34 g/kg
P: 14.37 mg/kg
Al: 1.30 cmol/kg
Ca: 1.10 cmol/kg

Mg: 0.38 cmol/kg K: 0.11 cmol/kg CEC: 2.89 cmol/kg Al-saturation: 44.95%

Field trial

Experimental design: RCB, 3 replications **Experimental unit:** 4x4 m plot

(60 experimental units in total)

Planting density: 10,000 plants/ha

(16 plants/plot)

Planting date: August 29, 2013

Fertilizers mixture rates (Kg/ha):

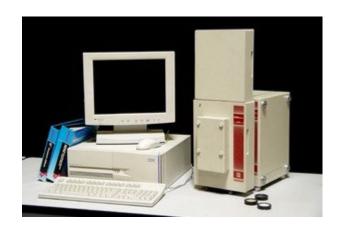
100 N (urea), 25 P (DAP), 50 K (KCl), 50.5 Ca, 14.2 Mg, 10 S, 0.44 B, 0.09 Cu and 2.6 Zn.

	20 m	
20	21	60
422	Bh26149	1250
19	22	59
450	1248	Bh16888
18	23	58
Bh26146	0700	1243
17	24	57
Bh26159	P max	696
16	25	56
0680	1250	Bh26146
15	26	55
Bh679	450	Bare
14	27	54
1155	Bh16888	0680
13	28	53
1243	0022	422
12	29	52
Mul II	0675	Bh26159
11	30	51
1250	1149	Bh679
10	31	50
1248	Bh26159	1155
9	32	49
Bare	696	1248
8	33	48
0675	Mul II	0700
7	34	47
696	0680	Bh26149
6	35	46
P max	Bare	0022
5	<u>36</u>	·
5 Bh16888		45
	422	1149
4	37 Bh26146	44 P max
3	38	43
0022	1155	0675
	39	42
Bh26149	1243	Mul II
1	40	41
1149	Bh679	450
D 4	P >	P >
R1	R 2	R 3
	Road	

Measurements from field evaluation 2014-2017

Wet season

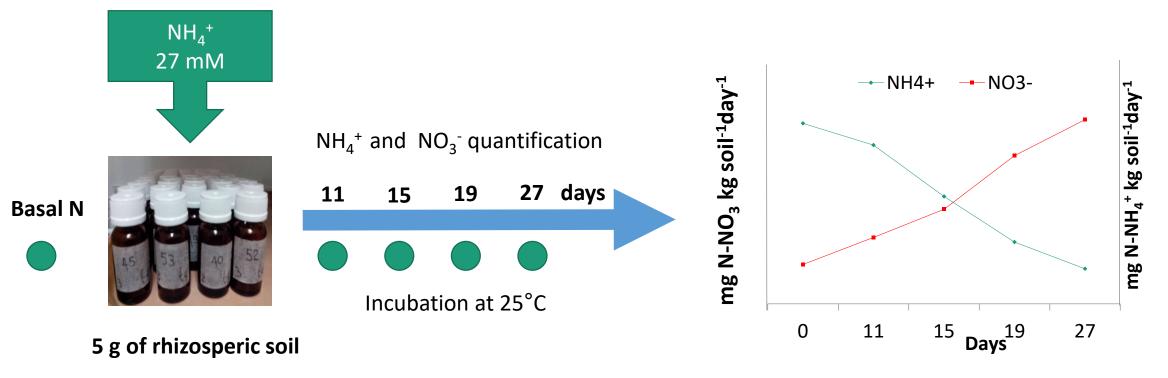
Dry season


Forage yield

• Biomass production

Forage quality parameters:

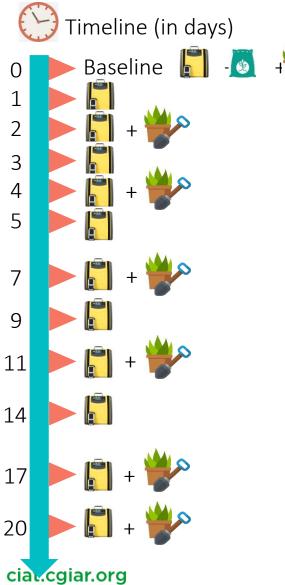
- Crude protein (CP)
- In vitro dry matter digestibility (IVDMD)
- Neutral and Acid detergent fiber (NDF, ADF)



ciat.cgiar.org

NIRS Foss 6800

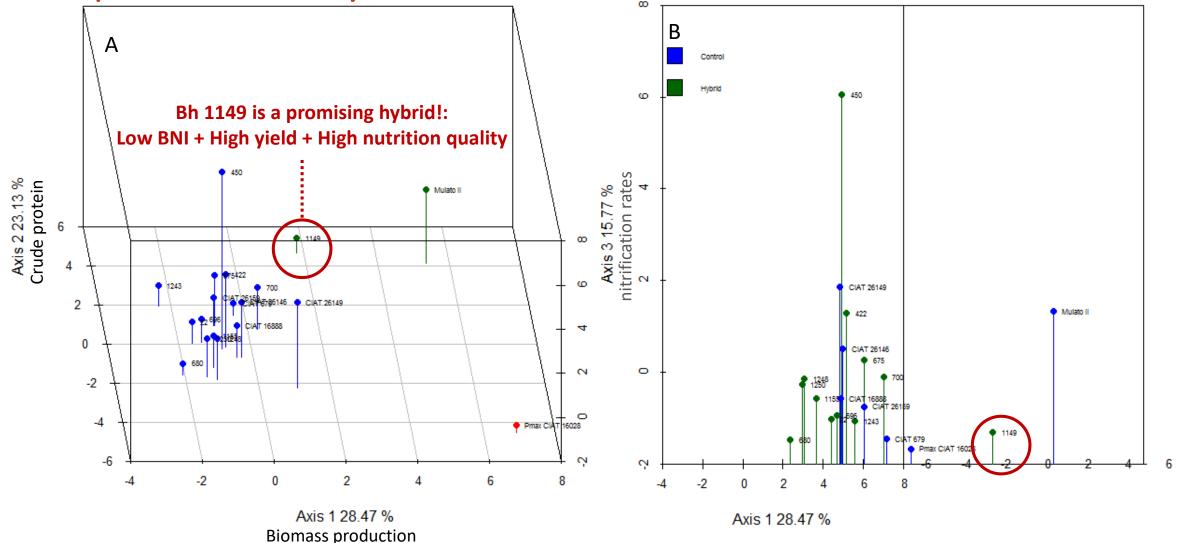
Soil nitrification rates measured during the rainy season



Nitrification rate (mg N-NO₃ kg soil⁻¹ day⁻¹)

High nitrification rate ~ Low BNI capacity!

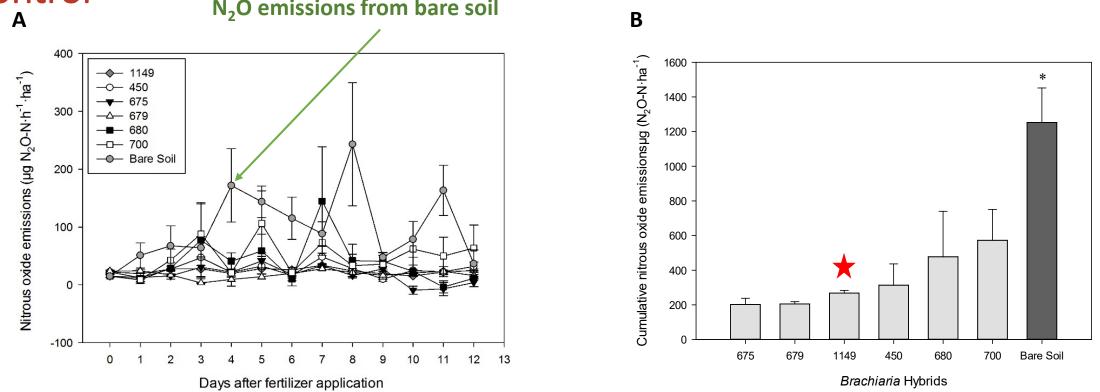
Measurement of $\rm N_2O$ emission in the field using a portable FTIR Gas analyzer



Daily measurements (per chamber)

- Soil moisture
- Soil temperature
- Nitrous oxide
- 2 chambers per each plot (6 chambers per genotype)
- Soil sampling each every 2 days to measure mineral nitrogen

Comparison of *Bh* hybrids in the field evaluation from 2014 to 2017


3D visualization of a principal component analysis based on forage yield (Axis 1), nutrition quality-crude protein (Axis 2), <u>nitrification rates (Axis 3)</u> **A.** Hierarchical Cluster using PCA; **B.** Representation comparing hybrids vs control genotypes

ciat.cgiar.org

Axis 2 23.13 %

N₂O emissions from *Brachiaria* hybrids BH08 are lower than bare soil Control A N₂O emissions from bare soil B

 N_2O emissions from *Brachiaria* hybrids BH08 (450, 675, 680, 700 and 1149) and controls Bh 679 cv. Tully (high BNI) and Bare Soil in the rainy season of 2018. **A.** N_2O emissions from *Brachiaria* hybrids BH08 during 11 days after fertilization. **B.** Bar plot showing cumulative N_2O emissions. Asterisk indicates significant difference according to Dunn test p<0.05

ciat.cgiar.org

Thank you!

Jacobo Arango @Jacobo_CIAT

Environmental Biologist_Tropical Forages_CIAT_Climate Change

research program on Livestock Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung

MAFF

RESEARCH PROGRAM ON Climate Change,

Agriculture and

CCAFS

Food Security

Please visit posters # 17 to 21!

CGIAR

This work was conducted as part of the **CGIAR Research Programs on Livestock and CCAFS**, and is supported by contributors to the CGIAR Trust Fund and **Federal Ministry for Economic Cooperation and Development of Germany**. CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centers in close collaboration with hundreds of partners across the globe. www.cgiar.org

j.arango@cgiar.org

REFERENCES: Galloway JN; Townsend AR; Erisman JW; Bekunda M; Cai Z; Freney JR; Martinelli LA; Seitzinger SP; Sutton MA. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 320:889-892. DOI: 10.1126/science.1136674

WE'RE PROUD TO HAVE CELEBRATED 50 YEARS OF AGRICULTURAL RESEARCH FOR DEVELOPMENT

International Center for Tropical Agriculture - CIAT

Headquarters and Regional Office for Southamerica and the Caribbean

+57 2 445 0000
 Km 17 Recta Cali-Palmira
 A.A. 6713, Cali, Colombia

☑ clat@cglar.org
 ⊕ clat.cglar.org

El CIAT es un Centro de Investigación de CGIAR